3.44 \(\int \frac{(A+B \cos (c+d x)) \sec ^2(c+d x)}{a+a \cos (c+d x)} \, dx\)

Optimal. Leaf size=69 \[ \frac{(2 A-B) \tan (c+d x)}{a d}-\frac{(A-B) \tanh ^{-1}(\sin (c+d x))}{a d}-\frac{(A-B) \tan (c+d x)}{d (a \cos (c+d x)+a)} \]

[Out]

-(((A - B)*ArcTanh[Sin[c + d*x]])/(a*d)) + ((2*A - B)*Tan[c + d*x])/(a*d) - ((A - B)*Tan[c + d*x])/(d*(a + a*C
os[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.156232, antiderivative size = 69, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.161, Rules used = {2978, 2748, 3767, 8, 3770} \[ \frac{(2 A-B) \tan (c+d x)}{a d}-\frac{(A-B) \tanh ^{-1}(\sin (c+d x))}{a d}-\frac{(A-B) \tan (c+d x)}{d (a \cos (c+d x)+a)} \]

Antiderivative was successfully verified.

[In]

Int[((A + B*Cos[c + d*x])*Sec[c + d*x]^2)/(a + a*Cos[c + d*x]),x]

[Out]

-(((A - B)*ArcTanh[Sin[c + d*x]])/(a*d)) + ((2*A - B)*Tan[c + d*x])/(a*d) - ((A - B)*Tan[c + d*x])/(d*(a + a*C
os[c + d*x]))

Rule 2978

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*
x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{(A+B \cos (c+d x)) \sec ^2(c+d x)}{a+a \cos (c+d x)} \, dx &=-\frac{(A-B) \tan (c+d x)}{d (a+a \cos (c+d x))}+\frac{\int (a (2 A-B)-a (A-B) \cos (c+d x)) \sec ^2(c+d x) \, dx}{a^2}\\ &=-\frac{(A-B) \tan (c+d x)}{d (a+a \cos (c+d x))}-\frac{(A-B) \int \sec (c+d x) \, dx}{a}+\frac{(2 A-B) \int \sec ^2(c+d x) \, dx}{a}\\ &=-\frac{(A-B) \tanh ^{-1}(\sin (c+d x))}{a d}-\frac{(A-B) \tan (c+d x)}{d (a+a \cos (c+d x))}-\frac{(2 A-B) \operatorname{Subst}(\int 1 \, dx,x,-\tan (c+d x))}{a d}\\ &=-\frac{(A-B) \tanh ^{-1}(\sin (c+d x))}{a d}+\frac{(2 A-B) \tan (c+d x)}{a d}-\frac{(A-B) \tan (c+d x)}{d (a+a \cos (c+d x))}\\ \end{align*}

Mathematica [B]  time = 1.10028, size = 201, normalized size = 2.91 \[ \frac{2 \cos \left (\frac{1}{2} (c+d x)\right ) \left ((A-B) \sec \left (\frac{c}{2}\right ) \sin \left (\frac{d x}{2}\right )+\cos \left (\frac{1}{2} (c+d x)\right ) \left ((A-B) \left (\log \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )-\log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )\right )+\frac{A \sin (d x)}{\left (\cos \left (\frac{c}{2}\right )-\sin \left (\frac{c}{2}\right )\right ) \left (\sin \left (\frac{c}{2}\right )+\cos \left (\frac{c}{2}\right )\right ) \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right ) \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )}\right )\right )}{a d (\cos (c+d x)+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[((A + B*Cos[c + d*x])*Sec[c + d*x]^2)/(a + a*Cos[c + d*x]),x]

[Out]

(2*Cos[(c + d*x)/2]*((A - B)*Sec[c/2]*Sin[(d*x)/2] + Cos[(c + d*x)/2]*((A - B)*(Log[Cos[(c + d*x)/2] - Sin[(c
+ d*x)/2]] - Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]]) + (A*Sin[d*x])/((Cos[c/2] - Sin[c/2])*(Cos[c/2] + Sin[c
/2])*(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])))))/(a*d*(1 + Cos[c + d*x]))

________________________________________________________________________________________

Maple [B]  time = 0.106, size = 163, normalized size = 2.4 \begin{align*}{\frac{A}{da}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }-{\frac{B}{da}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }-{\frac{A}{da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-1}}+{\frac{A}{da}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) }-{\frac{B}{da}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) }-{\frac{A}{da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-1}}-{\frac{A}{da}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) }+{\frac{B}{da}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c))*sec(d*x+c)^2/(a+cos(d*x+c)*a),x)

[Out]

1/d/a*A*tan(1/2*d*x+1/2*c)-1/d/a*B*tan(1/2*d*x+1/2*c)-1/d/a*A/(tan(1/2*d*x+1/2*c)-1)+1/d/a*A*ln(tan(1/2*d*x+1/
2*c)-1)-1/d/a*ln(tan(1/2*d*x+1/2*c)-1)*B-1/d/a*A/(tan(1/2*d*x+1/2*c)+1)-1/d/a*A*ln(tan(1/2*d*x+1/2*c)+1)+1/d/a
*ln(tan(1/2*d*x+1/2*c)+1)*B

________________________________________________________________________________________

Maxima [B]  time = 1.01823, size = 265, normalized size = 3.84 \begin{align*} -\frac{A{\left (\frac{\log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{a} - \frac{\log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{a} - \frac{2 \, \sin \left (d x + c\right )}{{\left (a - \frac{a \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}}\right )}{\left (\cos \left (d x + c\right ) + 1\right )}} - \frac{\sin \left (d x + c\right )}{a{\left (\cos \left (d x + c\right ) + 1\right )}}\right )} - B{\left (\frac{\log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{a} - \frac{\log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{a} - \frac{\sin \left (d x + c\right )}{a{\left (\cos \left (d x + c\right ) + 1\right )}}\right )}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^2/(a+a*cos(d*x+c)),x, algorithm="maxima")

[Out]

-(A*(log(sin(d*x + c)/(cos(d*x + c) + 1) + 1)/a - log(sin(d*x + c)/(cos(d*x + c) + 1) - 1)/a - 2*sin(d*x + c)/
((a - a*sin(d*x + c)^2/(cos(d*x + c) + 1)^2)*(cos(d*x + c) + 1)) - sin(d*x + c)/(a*(cos(d*x + c) + 1))) - B*(l
og(sin(d*x + c)/(cos(d*x + c) + 1) + 1)/a - log(sin(d*x + c)/(cos(d*x + c) + 1) - 1)/a - sin(d*x + c)/(a*(cos(
d*x + c) + 1))))/d

________________________________________________________________________________________

Fricas [A]  time = 1.39676, size = 320, normalized size = 4.64 \begin{align*} -\frac{{\left ({\left (A - B\right )} \cos \left (d x + c\right )^{2} +{\left (A - B\right )} \cos \left (d x + c\right )\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) -{\left ({\left (A - B\right )} \cos \left (d x + c\right )^{2} +{\left (A - B\right )} \cos \left (d x + c\right )\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \,{\left ({\left (2 \, A - B\right )} \cos \left (d x + c\right ) + A\right )} \sin \left (d x + c\right )}{2 \,{\left (a d \cos \left (d x + c\right )^{2} + a d \cos \left (d x + c\right )\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^2/(a+a*cos(d*x+c)),x, algorithm="fricas")

[Out]

-1/2*(((A - B)*cos(d*x + c)^2 + (A - B)*cos(d*x + c))*log(sin(d*x + c) + 1) - ((A - B)*cos(d*x + c)^2 + (A - B
)*cos(d*x + c))*log(-sin(d*x + c) + 1) - 2*((2*A - B)*cos(d*x + c) + A)*sin(d*x + c))/(a*d*cos(d*x + c)^2 + a*
d*cos(d*x + c))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{A \sec ^{2}{\left (c + d x \right )}}{\cos{\left (c + d x \right )} + 1}\, dx + \int \frac{B \cos{\left (c + d x \right )} \sec ^{2}{\left (c + d x \right )}}{\cos{\left (c + d x \right )} + 1}\, dx}{a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)**2/(a+a*cos(d*x+c)),x)

[Out]

(Integral(A*sec(c + d*x)**2/(cos(c + d*x) + 1), x) + Integral(B*cos(c + d*x)*sec(c + d*x)**2/(cos(c + d*x) + 1
), x))/a

________________________________________________________________________________________

Giac [A]  time = 1.26591, size = 149, normalized size = 2.16 \begin{align*} -\frac{\frac{{\left (A - B\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right )}{a} - \frac{{\left (A - B\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right )}{a} - \frac{A \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - B \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{a} + \frac{2 \, A \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )} a}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^2/(a+a*cos(d*x+c)),x, algorithm="giac")

[Out]

-((A - B)*log(abs(tan(1/2*d*x + 1/2*c) + 1))/a - (A - B)*log(abs(tan(1/2*d*x + 1/2*c) - 1))/a - (A*tan(1/2*d*x
 + 1/2*c) - B*tan(1/2*d*x + 1/2*c))/a + 2*A*tan(1/2*d*x + 1/2*c)/((tan(1/2*d*x + 1/2*c)^2 - 1)*a))/d